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SUMMARY

Electricalresponsemeasurements from 10 Hz to 100 kHz between 120 and 540 °C were made on

potassium-silicateglasseswith alkalioxide contentsof 2,3,5,and 10 mol%. Low alkalicontentglasses

were chosenin order to try to reduce the Coulombic interactionsbetween alkaliionsto the pointthat

frozenstructuraleffectsfrom the glasscould be observed.Conductivityand electricalrelaxationresponses

forboth annealed and quenched glassesofthe same compositionwere compared. Lower DC conductivity

(#DC) activationenergieswere measured forthe quenched compared to the annealed glasses.The two

glasseswith the lowestalkalicontentsexhibiteda non-Arrheniusconcave up curvaturein the log aDC

against1/T plots,which decreasedupon quenching.A sharp decreasein aDC was observed forglasses

containingK20 concentrationsof 5 mol% or less.The logmodulus losspeak (M") maximum frequency

plotsagainst1/T allshowed Arrhenius behaviorforboth annealed and quenched samples.The activation

energiesfortheseplotscloselyagreedwith the #DC activationenergies.A sharp increasein activation

energywas observed forboth seriesas the potassium oxideconcentrationdecreased.Changes in the elec-

tricedresponseare attributedto structuraleffectsdue to differentalkaliconcentrations.Differences

between the annealed and quenched responseare linkedto a change in the distributionof activation

energies (DAE).

INTRODUCTION

A great deal of interest has been expressed recently in developing a fast ion conductor material to act
as an electrode for molten salt fuel cell applications (ref. 1). A better understanding of the ionic diffusion

in disordered solids and the electric relaxation or dispersion of the permittivity as a function of frequency

is necessary to aid in this type of research. One way to provide some insight into the conduction mechan-

ism associated with these materials is to study the AC behavior of simple binary systems such as alkali-

silicate glasses.

Theories used to describe electrical relaxation may be categorized as either systems that exhibit time-

dependent transition rates (TDTR) for charge carrier migration from site to site in the solid (refs. 2

and 3) or those based on a distribution of transition rates (DTR) which characterize charge carrier trans-

port on a disordered potential energy surface (refs. 4 to 7). Theories based on the TDTR are assumed to
arise from Coulombic interactions occurring between migrating charge carriers. Since the charge carriers

can only move cooperatively, a perturbation such as an applied step field would be followed by correlated

motion of carriers that is progressively damped yielding the time dependency (ref. 2). In comparison,



theories based on a DTR have been shown, through the use of a continuous time random walk (CTRW)

approximation (ref. 8), to result in a frequency dependent conductivity, ¢(w), where _ is the angular

frequency. The ¢(_) is related to a distribution of activation energies (DAE) which results in a distribu-

tion of relaxation times (DRT) given by g(r) (refs. 7, 9, and 10). Both theories correctly predict the fre-

quency response of the real portion of the conductivity, o(w)', characterized by an approximate power

law behavior (ref. 7):

= oDC + (1)

where cDC is the DC conductivity, A is constant and n is the slope of the frequency dependent portion of
the curve having a value within the interval 0 < n __ 1.

By increasing the charge carrier interionic distances through the use of low alkali content glass sys-

tems, one may decrease the Coulombic interaction between charge carriers which is assumed to yield the
TDTR. The observed AC response should then be dominated by the DAE for conduction resulting from

the disordered potential energy surface. By measuring the AC response of quenched samples after their

annealed AC properties have been measured, the effects of structural changes within the glass, which

potentially may alter the DAE, can be observed without changing the glass composition. A similar study
on the AC response of both annealed and quenched binary silicate glasses by Boesch and Moynihan (ref. 11)

focused on both a potassium and sodium-silicate glass, but at alkali contents of 30 tool%. Yoshiyagawa

(ref. 12), and Yoshiyagawa and Tomozawa (ref. 13) also examined annealed and quenched lithium-silicate
glasses with alkali concentrations between 30 to 60 tool%. Both studies found little change in the AC

properties upon quenching. By only focusing on glasses with high alkali concentrations, any potential

change in the DAE may have been over shadowed by Coulombic interactions between the alkali ions.

Kelly et al. (ref. 14) have shown that the Haven ratio for a sodium-silicate glass does not start to

approach unity until alkali concentrations drop below 5 mol_. In relating correlation effects to the theory

of irreversible thermodynamics, the Haven ratio, HR, may be written as (refs. 15 and 16):

CALA*A* - CA*LA*A
HR= (2)

CA(LA* A q- LA*A* )

where CA and CA, are the concentrations of host and tracer ions respectively and Lij are the Onsager

coefficients. For the condition, C A --_ CA. --* 0, the off-dlagonal coefficients, LA,A, approach zero since
the interaction between the host flux and the tracer flux diminishes. As a result of these dilute conditions,

H R approaches unity. This indicates that the resulting electrical conductivity may be related to the
charge carrier mobility of a dilute system with negligible interionic Coulombic and blocking interactions.

The remaining serial correlation effects may be attributed to the disordered topology of the potential

energy landscape associated with the rigid silicon-oxygen network. The effective elimination of the inter-

ionic interaction effects should allow the experimenter to probe this potential energy landscape by way of

electrical relaxation measurements such as impedance spectroscopy. In addition, if the dilute system char-

acterized by HR = 1 is accepted as an approximation of a single particle system, all correlation may be
considered to be self-serial correlation effects (ref. 17). This condition now provides experimental access to

the elusive geometrical correlation factor, f, which may be given by:

f_ o(0) (3)
o(®)
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wherea(0) and a(®) are the DC and high-frequency limiting conductivities, respectively. Data from Kelly

et al. (ref. 14) suggest that alkali concentrations must be <5 mol_ before the Coulombic interactions of
the alkali begin to decrease to the point that the potential energy surface due to the glass structure begins

to dominate the conduction process.

Calculations by Martin (ref. 18) on alkali ion-ion separation distances show that ions begin to no

longer occupy adjacent interstitial positions at concentrations of <7 tool%, which is in agreement with

Kelly's work on Haven ratios (ref. 14). By concentrating on glasses with alkali concentration of less then
10 tool%, it may be possible to induce changes in the DAE enough to affect the AC response. In addition,

only a small amount of AC response data on low alkali silicate glasses currently exists. The purpose of
this initial study was to investigate AC conductivity and complex modulus behavior over a wide tempera-

ture and frequency range for potassium-silicate glasses with alkali concentrations from 2 to 10 tool%.

EXPERIMENTAL PROCEDURE

Sample Preparation

Glasses were prepared in 30 g batches using 99.99 percent pure potassium carbonate and ground

silica**. Binary compositions of the system xK20-(100-x)SiO 2 where x was equal to 2, 3, 5, and 10 mol%.

Herein, the specific compositions will be referred to as xKS where KS corresponds to potassium-silicate

and 'x' corresponds to the concentration of potassium oxide in mole percent in the glass. Each batch was

dry mixed to increase homogeneity and then calcined at 950 °C for 4 hr in a platinum-3 percent rhodium

crucible. The calcined powder was then ball milled for 3 hr to -325 mesh powder in porcelain jars using
alumina media to further homogenize the batch before melting. Glasses were then melted in the same

platinum-3 percent rhodium crucibles using a molybdenum-disUicide furnace between 1550 and 1670 °C.
Glass batches were held at temperature for up to 24 hr to minimize bubbles before roughly annealing at

550 °C. The 2 and 3 mol% K20 samples still contained bubbles of 0.5 mm in diameter or less after this
time, which corresponded to less than 1 vol%. Given the slow rate of fining at 1670 °C for these composi-

tions and the potential volatilization of the alkali, all of the glasses were removed after 24 hr of melting.

Chemical analysis using a plasma analysis technique was used to confirm potassium concentrations and to

determine the level of any contaminates, including alumina, soda, and lithia. Alumina concentrations
never exceeded 0.1 mol% while alkali contaminates were in the ppm level. Table I summarizes the potas-

sium oxide results.

Low alkali content silicate glasses have been reported to phase separate given the appropriate condi-

tions and follow the trend of lithia being the most susceptible and cesium being the least susceptible (i.e.,

Li > Na > K > Rb > Cs) (ref. 19). Examination of glass samples with back scattered electron (BSE)

and electron-microprobe analysis showed no evidence of phase separation for these compositions. All glass

samples were stored in a vacuum desiccator after annealing to reduce water absorption.

Samples for electrical measurements were obtained by coring samples from the crucibles using a 5/8-in.

diamond coring bit. Cylindrical samples of 1.2 cm in length were obtained using this technique. Cored

samples then underwent a final annealing cycle, an example of which is shown in figure 1. Approximate

annealing temperatures were chosen based on published viscosity data for potassium silicate glasses

(ref. 20). Disks with parallel faces were cut from the annealed cores using a diamond wafering saw. The

Aldrich Chemical Company, Inc., Milwaukee, WI 53233.

**Fisher Scientific, Fair Lawn, NJ 07410.



faces of the samples were then polished with 600 grit SiC before platinum electrodes were sputtered in a

two electrode configuration. Kerosene or lapping oil was used in place of water whenever possible during

all stages of sample preparation to minimize any leaching of the alkali from the samples.

Quenched samples were prepared from annealed samples that had completed comprehensive impedance

analysis. This eliminated the possibility of other factors (e.g., sample size) from contributing to dissimi-

larities in the measured data between samples with different thermal histories. The platinum electrode

material was first removed with 600 grit SiC before the sample was placed into a furnace at 800 o C. After

20 rain, the sample was quickly removed, placed on tabular alumina and allow to air cool to room tem-

perature. Examination of the sample after quenching under polarized light showed a typical birefringence

pattern for a quenched glass. After repolishing on 600 grit SiC, platinum electrodes were reapplied.

Density measurements were made on both annealed and quenched specimens using the Archimedes

technique. Again, lapping oil was used in place of water to reduce alkali leaching. The values, reported in

Table I, have a relative precision of +0.002 g/cm 3.

Impedance Measurements

Impedance measurements were made using a Schlumberger SL1260 Impedance/Gain Phase Analyzer

between 10 Hz and 100 kHz in the temperature range of 120 to 550 °C, as applicable. Fifty points per
decade were taken for each sample during which a null file, created at 200 ° C, was used to remove any

contributions from the measurement system from the total response. All measurements were made using a

2-V test signal and a 1-sec time delay between successive points. A 3-sec time integration was used for

each point to minimize measurement error. Test specimens were placed in an Inconel cell with spring
loaded platinum electrodes and leads. Circular Inconel shields placed near the sample diminished any

induced effects from the electrical windings in the furnace. A Pt-Ptl0Rh thermocouple, placed adjacent to

the specimen, was used for all sample temperature measurements. The test cell was positioned inside a

mullite tube that was open at one end and located inside a clam-shell furnace. A dry N 2 atmosphere was
used to ensure the integrity of the electrodes and to reduce water absorption by the specimen.

Given the measured complex impedance, the complex modulus M* and admittance Y* can be calcu-

latedfrom the equations(ref.21):

1
Y* = Y' - iY" -- h (4)

Z*

M* = M' - iM" = iwZ*%G (5)

where i is equal to _/'LT, _o is the permittivity of free space and G, the geometric factor, is equal to the
area of the electrode surface's divide by the sample thickness (A/L). The real portion of the AC conduc-

tivity is the real part of the admittance divide by the geometric factor. It is thus very simple to switch

from one immittance level to another, keeping in mind that it is still the same data just being viewed at a

different level. Since each immittance level has some drawbacks (e.g., M* plots tend to suppress low fre-

quency information while Z* suppresses high frequency information) it is generally best to examine the
data at several different levels.



Multipleexperimentswere conducted to confirm the repeatabilityof the AC propertiesas determined

by thisexperimentalprocedure.Severalsamples with thicknessesbetween 0.85and 1.75mm were cut

from the same glasscoreand measured with negligibledifferences.Duplicatesamples from differentglass

batcheswere alsocompared with similarresults.Finally,a glasssample was purposelyprepared thathad

a high concentrationof bubbles.The measured propertiesof thissample was then compared to a bubble

freesample to verifythat the bubbles have negligibleeffecton the AC propertiesof the glasses.Summary

admittance and modulus plotsof severalofthesesamples are givenin figure2.

By usingsputteredplatinum electrodes,polishingthe sample surfacesto 600 gritand using a small

testsignal,no electrodepolarizationeffectswere observed exceptforthe 10KS sample at highertempera-

tures.The onset ofelectrodepolarizationcan easilybe determined by an almost exponentialincreasein

the capacitancedata at low frequencies.Data pointsbelievedto includeelectrodepolarizationeffectswere

discardedfrom the data sets.

RESULTS

Conductivity

The real part of the admittance curves all exhibit the form of the response typical of other alkali sili-

cate glasses (refs. 10 to 13). Examples of the real portion of typical conductivity plots are shown in fig-
ure 3 for the 3KS quenched and annealed glass at three different temperatures. At low frequencies the

admittance is frequency independent while at higher frequencies it follows an approximate power law type

of behavior. This type of response, characteristic of ionic conductors (refs. 10 to 13, and 22), can be repre-

sented by the equation (1). By extrapolating the frequency independent portion of the admittance curves,

the aDC may be calculated. Figure 4 shows the log aDC plotted against 1/T for both the quenched and
annealed glasses while figure 5 shows all the annealed data on a single plot. These types of plots are

based on the Arrhenius equation (ref. 23):

-EJRT (6)
aDC ----A exp

where A is a constant, E a is the activation energy for aDC, R is the ideal gas constant, and T is the abso-
lute temperature. For the annealed glasses, both the 5KS and 10KS compositions closely follow an Arrhenius

type behavior while the two lower alkali content glasses display slight concave up curvatures in the lower

temperature region. The degree of curvature appears to increase as a function of both decreasing temperature
and alkali content. A small amount of upward curvature in log aDC versus 1/T plots has been reported

previously (ref. 10). Upon quenching, all of the plots for the four glass compositions shifted to higher

conductivity values with the magnitude of the shift increasing with increasing alkali concentration. In

addition, the degree of curvature in the 2KS and 3KS plots decreased slightly.

By plotting the log aDO as a function of potassium content, as shown in figure 6(a), two different approx-

imately linear regions are observed. The aDC changes very rapidly with increasing potassium oxide content

up to approximately 7 to 10 mol%, at which point a much lower rate of increase occurs. This change in
slope appears to occur over a relatively short range of alkali content. Data from work by other authors

(refs. 11, and 24 to 29) are also shown in figure 6(a) and demonstrate good agreement with this investigation.



Complex Modulus

The imaginary part of the modulus as a function of frequency at two different temperatures is shown

in figure 7 for the 2KS and 10KS samples, quenched and annealed. All plots exhibit the characteristic

increase in M' as a function of frequency and the occurrence of a loss peak in the M" data, commonly

referred to as conductivity relaxation peak (refs. 11 and 23). The plots for the imaginary part of the

electrical modulus against log frequency exhibit a maximum at 0:ro = 1, where ro corresponds to the

reciprocal of the frequency at the modulus loss peak maximum. The shape of the loss peak is very broad

compared to electrical relaxation peaks produced by materials with a single relaxation time or Debye

response (ref. 11). These type of broad loss peaks have been attributed to a distribution of relaxation

times (refs. 7, 11, and 22). The loss peaks are all asymmetric with the same skewing towards the high
frequency end of the spectrum. The modulus loss peak has been previously found to follow an Arrhenius

behavior similar to that followed by ¢DC based on the equation:

M*'(w) -- M o exp -E:/RT (7)

Plots of the log modulus loss peak maximum as a function of l/T, given in figure 8, all follow Arrhenius

behavior, even for the two lower alkali content glasses. This is in contrast to the upward curvature observed

in the log aDC versus 1/T plots for the 2KS and 3KS plots. Also similar to the log aDC versus 1/T plots,
a slightly larger gap between the annealed and quenched lines is observed for the higher alkali content

glasses compared to the lower alkali content glass.

aDO and M" Peak Activation Energies

Activation energies from both the annealed and quenched plots for the aDC and M" plots
(=t=0.75 Kcal/mol), shown in figure 9(a) as a function of alkali content, exhibit close agreement when

comparing values for aDC against M" for either the annealed or quenched samples. However, when com-
paring annealed against quenched activation energies for either aDC or M u, the quenched terms were
observed to be approximately 2.5 Kcal/mole lower than the annealed terms. The magnitude of the

decrease in the activation energies upon quenching appears to be independent of the alkali concentration.

Figure 9(a) also shows that the activation energy for aDC is larger for the lower alkali content glasses
and decreases almost linearly for increasing alkali concentrations up to the value for the 5KS sample, at

which point the slope decreases. In figure 9(b), activation energy values for an expanded range of alkali

concentrations from other authors (refs. 24, 27, and 30) are included and show good agreement with this

study.

Glass Density

Density values for the annealed glasses all closely agreed with values from previous authors (refs. 24

to 26). Quenching resulted in a 1-percent decrease in the measured density, on average. Slightly smaller
changes in density were measured for the lower alkali content glasses in comparison to the higher alkali

content glasses.



DISCUSSION

The upward shift in the log oDe and M" plots as a function of 1/T upon quenching is the result of the

pre-exponential term from the two Arrhenius equations (eqs. (6) and (7), respectively) increasing. The

magnitude of the shifts as a function of alkali concentration can be linked to the glass transition tempera-

ture, T_, for the different compositions. The Tg decreases as the alkali content of the glasses increases
g . • •

which results in a larger AT, which m given by:

AT = Tquench - Tg (8)

These increasing AT's as a function of increasing alkali concentration cause larger structural differences

between the annealed and quenched glasses for the higher alkali content glasses when compared to the

lower alkali content glasses.

In similarstudiesby Boesch and Moynihan (ref.11) and by Yoshiyagawa and Tomozawa (ref.13)

investigatinghigh alkalicontent (_30 tool%) silicateglasseswith differentthermal histories,the only

observedchange in the log aDC versusI/T plotswas an analogousincreaseinthe pre-exponentialterm

upon quenching.No change in the shape or slopeof the quenched curvesin comparison to the annealed

curveswas observed.For the 2KS and 3KS glassesstudiedhere,quenching decreasedthe amount of non-

Arrheniancurvaturemeasurably above thatobserved forthe annealed plotswhen compared over the

same temperature range.

Given thatthe admittance curvesat theselow temperatures have justreached the frequencyindepen-

dent region,itmay be argued that g(co)isstilldecreasingwith frequency.Ifthisiscorrect,itisnot pos-

sibleto extrapolatethe curveswithout gettingan erroneouslyhigh valueforaDC. However forallthe

pointsmeasured, the modulus losspeak,which has previouslybeen linkedto the onset ofthe frequency

independentportionof the admittance curve (ref.23),has alreadyoccurred.As a precaution,allODC

valueswere verifiedby usinga leastsquaresarc fiton the complex impedance plots,an example of which

isshown infigure10.Most circularfitswere similarto the one depictedinfigure10 in that the intercept

on the realaxis,which representsthe resistivity,agreed with the extrapolatedvalues.Some of the com-

pleximpedance plotsat the lower temperaturesdeviatedfrom semicircleswhen the realpart ofthe

impedance increasedat a greaterratethan the imaginary part at low frequencies.This resultedin a small

tailon the low frequencyend of the semicircleplotsand resultedinslightlylower oDC valuesto be

reported.Generallythe errorfellwithintemperaturemeasurement deviationsand was lessthan the size

ofthe data pointson the plotsgivenin figure4. For the caseswhere the differencein aDC was larger

than any errorintroducedby small temperaturedeviations,the oDC pointwas replacedby valuesfrom

the leastsquaressemicirclefits.

One potentialexplanationforthe curvatureobserved in the 2KS and 3KS log oDC plotsisbased upon

some recentMonte Carlo simulationsin diffusion(ref.31) in which a Gaussian distributionforsaddle

pointenergiescombined with a singlestablepointor siteenergywas used to calculatethe diffusioncoeffi-

cient,D. Itwas found thatthe Gaussian distributionforthe saddlepoint energiesresultedin higherthan

expecteddiffusioncoefficientsat lower temperatures.This resultedin a concave up curvaturein the logD

againstI/T plot,very similarto the curvatureobserved in figure4. When similardistributionswere used

forboth saddlepointand stablepointenergies,Arrhenius behaviorwas observed and was due to a com-

pensationeffectbetween the saddleand siteenergy distributions.This suggeststhatat higheralkalicon-

centrations,the saddleand stablepointenergieshave very similardistributions.As the alkalicontent

decreases,the Coulombic interactionsbetween the alkalidiminishand the potentialenergysurfaceisnow

dominated by the frozenstructure.The reduced Coulombic interactionsfrom neighboringalkaliions



could potentially change the distribution of either the saddle or stable point energies resulting in the

observed curvature for the log aDO plot. Since changing the thermal history of a glass is known to have
structural effects, quenching could further change the statistical landscape of the potential energy surface.

The larger resulting deviation between saddle and stable point energy distributions could then generate

the observed changes in the curvature.

Another possible explanation for the curvature in the aDC Arrhenius plot is that the pre-exponential
term and/or the activation energy term in equation (1) is temperature dependent. Work by Syed et al.

(ref. 32) has suggested that any temperature dependency of the pre-exponential term is very weak and

that it is best that ¢DC data be fit to the Arrhenius equation with no temperature dependency in the pre-
exponential term. A temperature dependency of the activation energy term would imply that some type

of structural change is occurring in the glass. This type of change would be more likely to manifest itself

in the higher temperature portion of the aDC plot rather than the observed low temperature region. How-
ever, changes in bond angles and other similar structural alterations commonly associated with thermal

expansion could potentially give the activation energy term a temperature dependency.

The sudden change in slope for the aDC plotted against potassium oxide content occurs in the same
alkali concentration region that Kelly et al. (ref. 14) showed that the Haven ration began to approach

unity. The change in the two plots at coinciding alkali concentrations suggests that the approximately
5 to 7 tool% alkali concentration for potassium-silicate glasses corresponds to the point where the diffus-

ing alkali begin to impede each other. For alkali concentrations greater than 7 tool%, occupation of avail-

able nearest neighbor site begins to increase. In order for an alkali to jump to a new site, a nearest neighbor

alkali atom may also have to jump to open an adjacent site. Due to the high site occupancy, the prob-

ability of an alkali jumping back to its original site is also much higher. As a result, the ¢DC increases at

a slower rate as the portion of alkali ions contributing to aDC decreases. This behavior is related to the

ionic transport phenomena associated with the conductivity correlation factor (ref. 34), fI, which reflects
serial correlation effects of the entire system. For alkali concentrations greater than 5 to 7 tool%, the

percolation efficiency of all charge carriers is apparently reduced due to their collective interaction result-
ing in a reduction of the net flux of charge carriers.

As the alkali concentration decreases below 7 mol%, the distance between nearest neighbor alkali ions

increases. However, the lower alkali concentrations also result in fewer nonbridging oxygen atoms (NBO)

and additional glass defects that aid in the conduction process by creating more open glass structures.
The number of percolation paths through the glass also decreases while the average energy on each path

increases as indicated by the higher aDC values for 2KS and 3KS. As a result, the activation energy

increases while aDC sharply decreases as the charge carrier mobility decreases. This type of interpretation
is consistent with the decrease in Haven ratio as a function of alkali content measured for alkali-silicate

glasses by Kelly et al. (ref. 14).

SUMMARY OF CONCLUSIONS

Initial findings indicate that both the aDC and M _ activation energies vary as a function of thermal
history for glasses with low potassium oxide concentrations. The non-Arrhenius behavior observed for

aDC for the 2KS and 3KS glasses may be linked to changes in the DAE. The sharp decrease in aDC with
decreasing potassium content is believed to be due to the increasing distance between NBO and other

defects in the glass structure which results in fewer percolation paths for conduction.
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TABLE L--ALKALI CONCENTRATION AND GLASS DENSITY

Glass composition 2KS 3KS 5KS 10KS

Potassium oxide concentration _ 1.7 2.8 4.4 9.4

(:I:0.5mol_)

Annealed density 2.223 2.234 2.258 2.307

(+0.002 g/cm s}

Quenched density 2.209 2.219 2.241 2.289

(±0.002 g/cm s)

aTrace elements were allless than I00 ppm, including all other alkali.
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